钠/钾摄入如何影响中国人的肠道菌群及血浆代谢物
创作:szx 审核:szx 2020年10月16日
  • 纳入2833名中国成年人,通过连续3天的饮食回顾评估受试者的钠摄入及钾摄入情况,并分析粪便菌群及其中392名受试者的血浆代谢产物;
  • 钠/钾摄入及钠/钾比值与特定分类群相关,并表现出地域特征;
  • 例如钠摄入、钠/钾比值与辽宁人的葡萄球菌属及莫拉氏菌科呈正相关,而钾摄入与上海人的毛螺菌科中的2个菌属呈正相关;
  • 钠/钾摄入及钠/钾比值与总代谢组及特定代谢产物相关,例如钠摄入与贵州人的丁酸盐/异丁酸盐及肠道来源的酚醛相关。
主编推荐语
szx
在小鼠实验及小规模人体试验中,钠摄入可改变肠道菌群及宿主代谢产物。American Journal of Clinical Nutrition上发表的一项队列研究结果,对近3000名中国成年人的饮食钠/钾摄入进行评估,并分析肠道菌群及血浆代谢组,发现钠/钾摄入及钠/钾比值与特定分类群(包括一些致病菌及短链脂肪酸产生菌)及代谢产物相关,且表现出地域特征。
关键字
延伸阅读本研究的原文信息和链接出处,以及相关解读和评论文章。欢迎读者朋友们推荐!

Associations of sodium and potassium consumption with the gut microbiota and host metabolites in a population-based study in Chinese adults

钠/钾摄入与肠道菌群及宿主代谢产物之间的关联

10.1093/ajcn/nqaa263

2020-10-06, Article

Abstract & Authors:展开

Abstract:收起
Background: There is increasing evidence that sodium consumption alters the gut microbiota and host metabolome in murine models and small studies in humans. However, there is a lack of population-based studies that capture large variations in sodium consumption as well as potassium consumption.
Objective: We examined the associations of energy-adjusted dietary sodium (milligrams/kilocalorie), potassium, and sodium-to-potassium (Na/K) ratio with the microbiota and plasma metabolome in a well-characterized Chinese cohort with habitual excessive sodium and deficient potassium consumption.
Methods: We estimated dietary intakes from 3 consecutive validated 24-h recalls and household inventories. In 2833 adults (18–80 y old, 51.2% females), we analyzed microbial (genus-level 16S ribosomal RNA) between-person diversity, using distance-based redundancy analysis (dbRDA), and within-person diversity and taxa abundance using linear regression, accounting for geographic variation in both. In a subsample (n = 392), we analyzed the overall metabolome (dbRDA) and individual metabolites (linear regression). P values for specific taxa and metabolites were false discovery rate adjusted (q-value).
Results: Sodium, potassium, and Na/K ratio were associated with microbial between-person diversity (dbRDA P < 0.01) and several specific taxa with large geographic variation, including pathogenic Staphylococcus and Moraxellaceae, and SCFA-producing Phascolarctobacterium and Lachnospiraceae (q-value < 0.05). For example, sodium and Na/K ratio were positively associated with Staphylococcus and Moraxellaceae in Liaoning, whereas potassium was positively associated with 2 genera from Lachnospiraceae in Shanghai. Additionally, sodium, potassium, and Na/K ratio were associated with the overall metabolome (dbRDA P ≤ 0.01) and several individual metabolites, including butyrate/isobutyrate and gut-derived phenolics such as 1,2,3-benzenetriol sulfate, which was negatively associated with sodium in Guizhou (q-value < 0.05).
Conclusions: Our findings suggest that sodium and potassium consumption is associated with taxa and metabolites that have been implicated in cardiometabolic health, providing insights into the potential roles of gut microbiota and host metabolites in the pathogenesis of sodium- and potassium-associated diseases. More studies are needed to confirm our results.

First Authors:
Yiqing Wang

Correspondence Authors:
Penny Gordon-Larsen

All Authors:
Yiqing Wang,Huijun Wang,Annie Green Howard,Matthew C B Tsilimigras,Christy L Avery,Katie A Meyer,Wei Sha,Shan Sun,Jiguo Zhang,Chang Su,Zhihong Wang,Bing Zhang,Anthony A Fodor,Penny Gordon-Larsen

评论